When the short time-scale evolution synchronizes with the time-scale of population & community dynamics dynamics, evolution alter ecological outcomes that previous theories expected. I suggests two points in eco-evolutionary dynamics.
Rapid evolution can be promoted by four factors (relatively important from first one):
De Novo mutation
Adaptive introgession
Migration load
< References >
Barrett, R. D., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in ecology & evolution, 23(1), 38-44.
Kersten, S., Chang, J., Huber, C. D., Voichek, Y., Lanz, C., Hagmaier, T., ... & Rabanal, F. A. (2023). Standing genetic variation fuels rapid evolution of herbicide resistance in blackgrass. Proceedings of the National Academy of Sciences, 120(16), e2206808120.
Chaturvedi, A., Zhou, J., Raeymaekers, J. A., Czypionka, T., Orsini, L., Jackson, C. E., ... & De Meester, L. (2021). Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nature Communications, 12(1), 4306.
Savolainen, O., Pyhäjärvi, T., & Knürr, T. (2007). Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst., 38, 595-619.
Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annual review of ecology, evolution, and systematics, 44, 367-388.
Rapid evolution are usually expressed by the quantitative genetic model under an assumption of weak selection. However, in nature, it is suggested that strong selection drive rapid evolution. May we use conventional evolutionary model to derive rapid evolution?
< References >
Cortez, M. H., & Weitz, J. S. (2014). Coevolution can reverse predator–prey cycles. Proceedings of the National Academy of Sciences, 111(20), 7486-7491.
Morita, K., & Yamamichi, M. (2024). Character displacement or priority effects: immigration timing can affect community assembly with rapid evolution. Proceedings B, 291(2035), 20242145.
< References >
Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., ... & Palkovacs, E. P. (2018). The ecological importance of intraspecific variation. Nature ecology & evolution, 2(1), 57-64.
Hausch, S., Vamosi, S. M., & Fox, J. W. (2018). Effects of intraspecific phenotypic variation on species coexistence. Ecology, 99(6), 1453-1462.
Hart, S. P., Schreiber, S. J., & Levine, J. M. (2016). How variation between individuals affects species coexistence. Ecology letters, 19(8), 825-838.
Lichstein, J. W., Dushoff, J., Levin, S. A., & Pacala, S. W. (2007). Intraspecific variation and species coexistence. The American Naturalist, 170(6), 807-818.
[Review]
Govaert, L., Fronhofer, E. A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., ... & Matthews, B. (2019). Eco‐evolutionary feedbacks—Theoretical models and perspectives. Functional Ecology, 33(1), 13-30.
Evolutionary rescue
< References >
[Review]
Bell, G. (2017). Evolutionary rescue. Annual Review of Ecology, Evolution, and Systematics, 48(1), 605-627.
Carlson, S. M., Cunningham, C. J., & Westley, P. A. (2014). Evolutionary rescue in a changing world. Trends in ecology & evolution, 29(9), 521-530.
[Evolutionary theories of quantitative traits]
Uecker, H., Otto, S. P., & Hermisson, J. (2014). Evolutionary rescue in structured populations. The American Naturalist, 183(1), E17-E35.
Osmond, M. M., & De Mazancourt, C. (2013). How competition affects evolutionary rescue. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120085.
Klausmeier, C. A., Osmond, M. M., Kremer, C. T., & Litchman, E. (2020). Ecological limits to evolutionary rescue. Philosophical Transactions of the Royal Society B, 375(1814), 20190453.
Shibasaki, S., & Yamamichi, M. (2024). The double-edged effect of environmental fluctuations on evolutionary rescue. bioRxiv, 2024-08.
[Population genetics]
Orr, H. A., & Unckless, R. L. (2014). The population genetics of evolutionary rescue. PLoS genetics, 10(8), e1004551.
Uecker, H., & Hermisson, J. (2016). The role of recombination in evolutionary rescue. Genetics, 202(2), 721-732.
Stelkens, R. B., Brockhurst, M. A., Hurst, G. D., & Greig, D. (2014). Hybridization facilitates evolutionary rescue. Evolutionary applications, 7(10), 1209-1217.
[Empirical studies]
Anderson, J. T., DeMarche, M. L., Denney, D. A., Breckheimer, I., Santangelo, J., & Wadgymar, S. M. (2025). Adaptation and gene flow are insufficient to rescue a montane plant under climate change. Science, 388(6746), 525-531. https://doi.org/10.1126/science.adr1010
Evolutionary suicide
< References >
[Review]
Parvinen, K. (2005). Evolutionary suicide. Acta biotheoretica, 53(3), 241-264.
Ferriere, R., & Legendre, S. (2013). Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120081.
[Adaptive dynamcis]
Gyllenberg, M., & Parvinen, K. (2001). Necessary and sufficient conditions for evolutionary suicide. Bulletin of mathematical biology, 63, 981-993.
Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of mathematical biology, 45, 79-105.
Boldin, B., & Kisdi, E. (2016). Evolutionary suicide through a non-catastrophic bifurcation: adaptive dynamics of pathogens with frequency-dependent transmission. Journal of mathematical biology, 72, 1101-1124.
Vitale, C., & Kisdi, E. (2019). Evolutionary suicide of prey: Matsuda and Abrams’ model revisited. Bulletin of mathematical biology, 81(11), 4778-4802.
Suicide or rescue?
< References >
Henriques, G. J., & Osmond, M. M. (2020). Cooperation can promote rescue or lead to evolutionary suicide during environmental change. Evolution, 74(7), 1255-1273.
Indirect evolutionary rescue in the predator-prey system
< References >
Yamamichi, M., & Miner, B. E. (2015). Indirect evolutionary rescue: prey adapts, predator avoids extinction. Evolutionary Applications, 8(8), 787-795.
Evolutionary rescue
Character-displacement-driven
Morita, K., & Yamamichi, M. (2023). How does the magnitude of genetic variation affect ecological and reproductive character displacement?. Population Ecology, 65(4), 220-230.
Mutualism-driven
Melero-Jiménez, I.J., Sorokin, Y., Merlin, A. et al. Mutualism breakdown underpins evolutionary rescue in an obligate cross-feeding bacterial consortium. Nat Commun 16, 3482 (2025). https://doi.org/10.1038/s41467-025-58742-1
Response to clmate change
Åkesson, A., Curtsdotter, A., Eklöf, A. et al. The importance of species interactions in eco-evolutionary community dynamics under climate change. Nat Commun 12, 4759 (2021). https://doi.org/10.1038/s41467-021-24977-x
Evolutionary exclusion (murder)
< References >
Morita, K., Sasaki, A. & Iritani, R. (2025) How can interspecific pollen transfer affect the coevolution and coexistence of two closely related plant species?. Oikos DOI: 10.1002/oik.11133 (bioRxiv, DOI: 10.1101/2024.09.05.611318)
Rescue or murder?
< References >
Shang, Y., Kasada, M., & Kondoh, M. (2024). Rescue or murder? The effect of prey adaptation to the predator subjected to fisheries. Ecology and Evolution, 14(12), e70336.
Evolutionary double-suicide
< References >
Uchiumi, Y., Sato, M., & Sasaki, A. (2023). Evolutionary double suicide in symbiotic systems. Ecology Letters, 26(1), 87-98.
Eco-evolutionary limit cycle
< References >
Vasseur et al., 2012
Yamamichi, M., Gibbs, T., & Levine, J. M. (2022). Integrating eco‐evolutionary dynamics and modern coexistence theory. Ecology Letters, 25(10), 2091-2106. https://doi.org/10.1111/ele.14078
[Review]
Wickman, J., Koffel, T., & Klausmeier, C. A. (2023). A theoretical framework for trait-based eco-evolutionary dynamics: population structure, intraspecific variation, and community assembly. The American Naturalist, 201(4), 501-522.
[Theory]
Klausmeier, C. A., Kremer, C. T., & Koffel, T. (2020). Trait-based ecological and eco-evolutionary theory. Theoretical ecology, 161-194.
[Empirical]
Barber, J.N., Nicholson, L.C., Woods, L.C. et al. Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. ISME J 16, 1442–1452 (2022). https://doi.org/10.1038/s41396-022-01191-1
[Indirect effects]
Walsh, M. R. (2013). The evolutionary consequences of indirect effects. Trends in Ecology & Evolution, 28(1), 23-29. https://doi.org/10.1016/j.tree.2012.08.006
[Co-evolution]
Anurag A. Agrawal, Xuening Zhang, The evolution of coevolution in the study of species interactions, Evolution, Volume 75, Issue 7, 1 July 2021, Pages 1594–1606, https://doi.org/10.1111/evo.14293
[Review]
Dieckmann, U., Brännström, Å., HilleRisLambers, R., Ito, H.C. (2007). The Adaptive Dynamics of Community Structure. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds) Mathematics for Ecology and Environmental Sciences. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34428-5_8
[Reference]
Kremer, C. T., & Klausmeier, C. A. (2013). Coexistence in a variable environment: eco-evolutionary perspectives. Journal of theoretical biology, 339, 14-25.
[Reference]
Bonte, D., Keith, S., & Fronhofer, E. A. (2024). Species interactions and eco-evolutionary dynamics of dispersal: the diversity dependence of dispersal. Philosophical Transactions B, 379(1907), 20230125. https://doi.org/10.1098/rstb.2023.0125
Alexander, J. M., Atwater, D. Z., Colautti, R. I., & Hargreaves, A. L. (2022). Effects of species interactions on the potential for evolution at species' range limits. Philosophical Transactions of the Royal Society B, 377(1848), 20210020. https://doi.org/10.1098/rstb.2021.0020
Pigot, A. L., & Tobias, J. A. (2013). Species interactions constrain geographic range expansion over evolutionary time. Ecology letters, 16(3), 330-338. https://doi.org/10.1111/ele.12043
Urban, M. C. (2011). The evolution of species interactions across natural landscapes. Ecology Letters, 14(7), 723-732. https://doi.org/10.1111/j.1461-0248.2011.01632.x
Ellner, S. P. (2013). Rapid evolution: from genes to communities, and back again?. Functional Ecology, 27(5), 1087-1099. https://doi.org/10.1111/1365-2435.12174
[Reference]
Orsini, L., Andrew, R., & Eizaguirre, C. (2013). Evolutionary ecological genomics. Molecular Ecology, 22(3), 527-531. https://doi.org/10.1111/mec.12177